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Some conformally-flat space-times of a divergence-free 
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UK 
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Abstract. We present some interesting, conformally-flat metrin for a pseudo-Riemannian 
space-time with a divergence-free curvature tensor. The effective (gravitational) poten- 
tials for these metrics show both repulsive and periodic properties. 

From an experimental point of view Einstein’s theory of gravity is the most successful 
model of gravitational phenomena that we have at the present time. However, its 
theoretical structure, though both simple and elegant, has two major disadvantages. In 
the first place, it is an isolated description. All attempts at unifying the principles of 
general relativity with those of classical electromagnetism and quantum theory have 
resulted in formulations which are either ambiguous, highly contrived or both. 
Secondly, it is an essentially singular description and leads inevitably to gravitational 
collapse with all its attendant pathologies. For example, the bizarre extrapolations of 
the consequences of the singularity theorems are in sharp contrast to the ‘physically 
reasonable’ assumptions needed to prove them (for details see Hawking 1976, Carter 
1968). 

These undesirable properties of the Einstein model have led to a search for viable 
alternatives which are either non-singular, more amenable to quantisation or, hope- 
fully, possess both these features. A recent attempt in this direction was made by 
Yang (1974) who proposed the free-field equations 

where R,, is the Ricci tensor and the semicolon denotes the covariant derivative. It 
should be noted, however, that this is not the first time these equations have appeared. 
They had previously occurred in a theory put forward by Stephenson (1958) and were 
first studied, in the context of a Riemannian connection, by Kilmister and Newman 
(1961), and Kilmister (1962). On the other hand, Yang’s derivation is novel, since he 
treats gravity as a conventional non-Abelian gauge field and recent developments in 
quantum field theory have shown that considerable progress has been made in 
devising renormalisation procedures for non-Abelian gauge fields. Thus, it is 
conceivable that this theory can be quantised and may perhaps lead to more tractable 
results than the Einstein model. 

At the formal level, the Yang equations are a generalisation, to third differential 
order, of Einstein’s free-field equations R,, = 0 and hence, they represent a model 
with extra degrees of freedom: degrees of freedom which are frozen in the Einstein 
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case, As a direct result, the model has a large variety of solution space-times, 
including, of course, the Einstein spaces, and the purpose of this paper is to present 
some interesting, conformally-flat solutions of (1) for the case of a static, isotropic 
metric. Note, in this context, that the Einstein equations have no conformally-flat 
solution space-times other than the trivial one of the Minkowski metric. 

We should mention, at this point, that there are certain misgivings about the 
consistency of Yang’s derivation (see Fairchild 1976, especially reference 12 at the 
end of his paper). However, these seem to centre around the complete-or, rather, 
incomplete-application of a variational principle, the use of which, in this particular 
context, is generally considered to be dubious anyway (see Stephenson 1977). Thus, 
Fairchild’s arguments are also open to question. We leave the reader to make up his 
own mind on this matter, but in our opinion the debate is somewhat premature. A 
variational principle, often constructed ‘a posteriori’, is one of a number of heuristic 
devices employed for selecting mathematical models and should not be used, in the 
first instance, to validate or invalidate any particular model. This function is accom- 
plished by developing the consequences of the model and hence providing it with a 
predictive data base. It is towards this latter end that our paper is directed. Never- 
theless, for those who like some sort of non-controversial justification for considering 
the model, note that equations (1) are equivalent to demanding a pseudo-Riemannian 
space-time whose curvature tensor is everywhere divergence free. This follows 
directly from the contracted Bianchi identities and is, effectively, the necessary and 
sufficient condition that Yang uses to define his ‘pure spaces’. One consequence of 
this is that the scalar curvatures of all solutions of (1) are necessarily constants. Thus, 
in this model, free-field gravity is a manifestation of a conserved curvature tensor 
rather than the stronger Einstein condition of a zero Ricci tensor. In this sense the 
model is also mathematically interesting. 

We start with (1) and consider a static, isotropic metric in the ‘standard’ space-like 
form 

ds2= f(r)dr2+r2(d02+sin20 dr$*)-g(r)dt2, (2) 

where the functions f ( r )  and g(r) are determined by the requirement that (2) be a 
solution of (1). In a previous publication (Barrett et a1 1977) we have shown that (2) 
will be a solution of (1) provided that f and g satisfy the minimal differential equations 

“3 f g ’ - & = - ( r R + T  f 2g , 
3 r 

where R is the (constant) curvature scalar and C is, what we have termed, the 
conformal constant. Putting R = 0 and C = 4m in (3) reduces them to the minimal 
differential equations of the Einstein model for which, of course, the Schwarzschild 
space-time is the unique solution. 

For conformally-flat solutions of (3) C has to be zero (Barrett et a1 1977), and we 
initially consider those particular space-times for which R = 0 as well. In this case 
(3a )  gives us g = af, where a is a constant, while ( 3 b )  reduces to 

r2ff- (r,f‘)’+ 2f2(1 -f) = 0. (4 ) 
Now (4) is an equation of polynomial class (Davis 1962) and to solve it we look for a 



Conformally -fiat space-times of divergence-free Riemann tensor 7 11 

linear fractional transformation of the dependent variable f which will reduce it to one 
of the 50 soluble types listed by Davis. The general transformation takes the form 

a + b z  
c + d z ’  

f=- 

where a, b, c and d are constants or free functions of r and z is the new dependent 
variable. After much tedious algebra we find that the choice a = 0, b = r2 ,  c = 1, d = 0 
gives us the desired result and reduces (4) to 

22’’ = ( z ’ ) ~ + ~ z ~ .  (6)  
Now, by putting z =eu,  we get 

U” = 2eu, (7) 

which can be integrated once to give 

(U’)’ = 4e” + 2kl, (8) 

where kl is the constant of integration. The further substitution 2p2 = 2e” + kl then 
leads to the explicit integral 

where k2 is a second constant of integration. We now consider three cases. 

(i) k l = 0  

Equation (9) can be integrated to give 

g = af = a [ 1 + (k2/r)]-2 ( loa )  

which is a generalisation of a solution of (1) first given by Pavelle (1975) and by 
Thompson (1975). The metric given by ( loa )  is obviously asymptotically flat and, if 
we interpret the resulting space-time as that of an isolated point mass m, then 
Newtonian correspondence gives us k2 = m. However, this space-time has bad post- 
Newtonian behaviour. There is no asymptotic bending of light and perihelion motion 
is in the opposite direction to that observed. On the other hand, the effective potential 
of the space-time for a test particle with angular momentum L (in the usual units) is 
given by 

v:* - (1 + m/r)-2(1 +L2 / r2 ) ,  ( lob)  
which shows redeeming features in the strong-field region. We have analysed this 
metric in detail (Stuart et a1 1977, submitted for publication, preprints available on 
request) and shall report on it elsewhere. 

(ii) kl < 0 

In this case, on integrating equation (9), we find 

2g = 2af = cvlkllr’ ~ec~[(lk11/2)”~(r + k2)] .  

The resulting metric appears to be highly pathological, since in addition to its periodic 
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properties it also diverges when r + k2 + (2n + 1)7r/2. If we write down the effective 
potential of the corresponding space-time we find, for time-like geodesics, 

v:, - ( r2  sec2 r)(l +L2/r2)  (1 lb)  

where, without loss of generality, we have chosen kl = -2 and k2 = 0. The space-time 
thus consists of a series of inescapable ‘traps’ which seem to have more in common 
with quantum mechanics than with gravitation. 

( i i i )  kl > 0 

Once more, equation (9) can be integrated to give 

2g = 2af = akl r2  cosech’[(k1/2)”’(r + k2)] .  (12a) 

This metric is rather interesting. Firstly, notice that as r+oo both f and g+O 
irrespective of the value of k2. Thus, in this limit, the space-time represented by (12a) 
degenerates into a (space-like) two-sphere. On the other hand, the behaviour of the 
metric near r = 0 depends critically on the value of kz. For example, if k2 = 0 then the 
space-time becomes flat as r+O. We can get a better idea of these properties by 
looking at the effective potential for timelike geodesics 

Vf, - (r2 + L 2 )  cosech2(r + kz), (12b) 

where, for convenience, we have put kl = 2. We can now examine the three cases 
separately. 

( a )  If k2 = 0 then the potential is repulsive everywhere and only radial geodesics 
with energy E 5 1 can get through to the origin, r = 0, where the space-time is flat. 
The origin is therefore an unstable equilibrium point for radial test particles with 
E = l .  

(b) If k2 < 0 the potential becomes infinite for r = lk21, is repulsive for r > lk2/ and 
attractive for r < lk2/. The potential thus takes the form of a closed spherical ‘box’ of 
radius lk21 with a stable equilibrium point at r = 0. As a result, anything inside cannot 
get out and vice versa. 

(c) If k2 > 0 then, for L > 0, the potential is similar to that of case (a ) .  For L = 0 
the maximum of the potential moves to a non-zero value of r while the origin becomes 
a minimum. 

Although this metric is obviously not applicable in the weak-field region, it could 
be useful in those regions where the Einstein model becomes singular. One can 
envisage a ‘compromise’ between the Schwarzschild metric and this metric which is 
non-singular and still satisfies the weak-field tests. 

The metrics discussed above exhaust the set of conformally-flat space-times (of the 
form (2)) which are solutions of (1) and have zero scalar curvature. For R # 0 
equation (36) becomes 

r2 f f” - ( r f ‘ )2+(R/2 ) r3 f2 f ’+  2f2(1 -f)+(R2/18)(tf)4 = 0, (13) 
which is, again, an equation of polynomial class. However, we have not succeeded in 
finding a linear fractional transformation which will reduce (13) to one of the 50 
soluble types mentioned before, and are inclined to believe that, even though the 
equation is of polynomial class, it cannot be solved by this method. 
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